


The Fast Fourier Transform algorithm and the de­
velopment of powerful LSI devices are producing a revo­
lution in the design of signal analyzers. The 3582A Low 
Frequency Spectrum Analyzer is based on this new tech­
nology and provides both greatly increased measurement 
speed and several kinds of measurement not available in 
traditional analog instruments. 

One of the new measurements 'available in the 3582A 
is called the coherence function. If you have encountered 
problems with noise when measuring transfer functions, 
the coherence function will help to pinpoint where the 
difficulty lies. Similarly, if you are trying to determine 
whether one signal is wholly or partly responsible for an-

The HP 3582A is a spectrum analyzer covering the 
frequency range of DC to 25 kHz. Although it is a FFT-
based, digital instrument, a special design effort has made 
it as straightforward to use as a conventional swept ana­
lyzer. With dual measurement channels it is possible to 
measure transfer function gain and phase, as well as the 
coherence function. A built-in random or pseudo-ran-

other, the coherence function will help because it indi­
cates causality. 

Although the coherence function has been a relatively 
unfamiliar statistical parameter, its usefulness is becoming 
apparent to the growing number of persons who need to 
analyze low frequency signals. Having the coherence 
function internally computed and available for display in 
the 3582A and similar instruments will, of course, in­
crease interest in understanding its properties. This appli­
cation note is intended both as an initial contribution to 
this understanding and as an encouragement to 3582A 
users to utilize the coherence function in solving their 
measurement problems. 

dom noise source, whose spectrum tracks the analysis 
range, is a useful measurement stimulus. Band Selectable 
Analysis enables narrowband, high resolution analysis to 
be applied to any portion of the frequency range. The in­
strument comes equipped with a flexible HP-IB interface 
for control and two-way data transfers. 



Transfer function measurements 
Canse»effect relations 
This section describes two classes of measurements and indicates the role of the 
coherence function in each. 

What Is it?" 
The role of the coherence function in spect rum aweraging 
A note of caution 
Summary of how the coherence function is used 
A brief discussion of the coherence function, its properties and its interpretation 
is followed by the reasons why it is usually associated with spectrum averaging. 
A possible problem in interpreting the coherence function is explained. 

Transfer function measurements 
Causality measurements 
A specific procedure for using the coherence function to assess the validity of 
measured transfer functions is given. Another procedure is outlined for meas­
urement of the coherence function itself. For each case, 90 percent statistical 
confidence tables are provided for quantitative interpretation of the measure­
ments. 

Example 1: monitoring a transfer function measurement 
Example 2: dual-input system with random signals 
Here are the results of two experiments which illustrate the two principal roles of 
the coherence function. 

Linear spectra and power spectra 
Mathematical definition of the coherence function 
Interpreting the coherence function as a power ratio 
Interpreting the coherence function as a correlation coefficient 
The use of the cross power spectrum to calculate transfer functions 
Mathematical definition and interpretations of the coherence function were left 
out of the main body of the application note, but are included here for fuller 
understanding. 



Transfer function measurements and the 
coherence function 

Many engineering problems are solved through deter­
mining how signals are modified in amplitude and phase 
as they pass through a system. Transfer function meas­
urement, as this is called, is often made with a network 
analyzer. This is a specialized instrument which provides 
a driving signal and can measure the input/output ampli­
tude ratio and phase shift over a band of frequency. Fig­
ure 1 shows a typical setup. An excitation signal, such as 
a swept sinewave or a broadband source, is applied to the 
input of the system being checked. The system output -
its response to the excitation—is measured and the trans­
fer function is calculated. For the calculation, both input 
and output are in the form of frequency functions. 

In "real life" situations, sometimes complications come 
up which render this kind of measurement inaccurate or 
even useless. The problem is the presence of additional 
signals in the output of the system. One kind of disturbing 
signal is noise, whether internal to the system or external. 
Another disturbance takes the form of distortion products 
generated by system nonlinearities. In either case, the 
disturbing signals affect the accuracy of measuring the 
linear input/output relation. 

Measur ing a s y s t e m ' s t ransfer func t ion 

disturbing signals may 
j / ' be introduced here 

It is evident that determining the transfer function H(f) 
by calculating the spectral ratio Y (f)/X(f) will lead to irre­
coverable errors whenever there is a disturbing signal in­
cluded with the output Y(f). The 3582A reduces these 
errors through a computational technique: it uses the 
cross power spectrum (see appendix) and spectrum aver­
aging. The question remains, however, how many aver­
ages are needed to attain a desired accuracy? 

Another kind of transfer function problem is the mul­
tiple-input system represented by Figure 2. In this case, 
the signal Y at the output is a composite of energy from 
several sources Xx, X2, etc. This situation may be inten­
tional or unintentional. We want to determine the transfer 
function from each input to the output; in general, these 
are not identical. An obvious way to do this is to turn off 

all sources and to apply the network analyzer to each 
path in turn. However, this can't always be done or is 
often undesirable (vibration measurement on a 4-engine 
aircraft, for example). Thus, it becomes necessary to 
measure the desired transfer function in the presence of 
signals from other sources. The 3582A can perform this 
measurement, but, again, we have to answer the ques­
tion of how many spectra must be averaged to achieve a 
given accuracy. 

We shall show in Section 3 how the coherence func­
tion may be used to determine the number of averages 
needed. 

Cause-effect relations and the coherence 
function 

Figure 2 serves as the model for another engineering 
problem. In this case, the exact shape of the transfer 
function between any input and the output is not needed. 
Rather, we are looking for causality; that is, we want to 
determine how much each source influences the ob­
served output Y. For instance, which machine in a shop 
is most responsible for the noise at a given location? 
Which is least responsible? Traditionally, this measure­
ment, when made at all, has relied on determining the 
cross-correlation function between the suspected source 
and the output signal Y. The coherence function will also 
reveal these causality relations, but it has an additional 
advantage over the cross-correlation function. The cross-
correlation function is a function of time, and its maxi­
mum value corresponds to the approximate time delay 
(that is, propagation time) between the source and the 
observed effect Y. However, the coherence function is a 
function of frequency, and its maximum values occur at 
the frequencies where the greatest transfer of energy is 
taking place. The remedies used to suppress interference 
(noise, vibration, etc.) depend on the frequency distribu­
tion of the interference. Therefore, the coherence func­
tion not only reveals the degree of causality but is a direct 
aid in choosing the best means to solve the interference 
problem. 

An example of the use of the coherence function in this 
application will be given in Section 4. 



What Is it? 
Leaving the mathematical definition for the appendix 

of this note, we can summarize the important features of 
the coherence function: 

a) it is a dimensionless, frequency-domain function. 
b) its range of values is 0 to + 1. 
c) at each frequency, it represents the fraction of the 

system output power directly related to the input. 
With these properties, the coherence function is rather 

like a cross-correlation function in the frequency domain. 
(This interpretation is developed in the appendix.) If the 
system in Figure 1 has no contaminating noise, or there is 
only one input to the system in Figure 2, the coherence 
function is + 1 at every frequency where there is any out­
put energy. 

On the other hand, if X = 0 or H = 0 at some frequency 
(so that noise is the only output), the coherence function 
is zero for that frequency. 

When the coherence function is less than unity, at least 
one of the following conditions exists: 

a) there is noise contaminating the measurement 
b) the system is nonlinear (and generating energy at 

additional frequencies) 
c) other inputs are present in the system. 

The role of the coherence function 
in spect rum a¥eraging 

In reading material on the coherence function, one 
soon notices that it is almost always discussed and used in 
the context of spectrum averaging. There are two prin­
cipal reasons for this. First, in some situations there is un­
wanted noise contaminating the measurement-—such as 
the transfer function measurement. To compute the 
transfer function, the 3582A makes use of the cross-
power spectrum and relies on averaging to increase the 
signal-to-noise ratio. The role of the coherence function 
in this case is to give an indication of how many averages 
are needed to achieve a given statistical accuracy. 

The second reason for the association of the coherence 
function with spectrum averaging concerns the use of the 
FFT algorithm. When the FFT is used to calculate the co­
herence function, a single transform results in a value of 
unity for the coherence function regardless of its true 
value. A number of transforms must be averaged to pro­
duce a useful (that is, accurate) estimate of the coherence 
function itself. 

For these reasons, the 3582A provides computation 
and display of the coherence function only in conjunction 
with the power spectrum averaging routing (called 
"RMS" averaging on the front panel). 

Statist ical accuracy vs. 
instrument accuracy. 

In discussing accuracy improvement through averag­
ing, we must point out that we mean stat ist ical accu­
racy and not instrument accuracy. Statistical errors occur 
because we can measure only a finite sample of a signal. 
In general, the longer the sample, the smaller is the statis­
tical error. Averaging is one way of measuring a longer 
sample. 

On the other hand, there is always the problem of in­
strumentation errors. They exist for the traditional rea­
sons of component tolerance, aging, misadjustment, 
etc., and they are usually not reduced by averaging. So 
the discussion of the role of the coherence function in 
accuracy improvement refers only to statistical accuracy. 

For further discussion of the use of spectrum averaging 
in the measurement of noisy or noise-like signals, we 
refer the reader to the companion Application Note, 
245-1 "Signal Averaging With the HP 3582A Spectrum 
Analyzer." 

A note of caution 
As useful as the coherence function may be in resolv­

ing some of the measurement difficulties mentioned, it is 
not a panacea. There is one situation in particular in 
which the user must guard against misinterpreting the in­
formation contained in the coherence function. This 
occurs most commonly in causality measurements and 
often involves signals at AC powerline frequencies. 

For example, suppose the problem is that AC magnetic 
flux is leaking into a sensitive electronic circuit, and that 
one of several nearby transformers is suspected to be the 
culprit. Using appropriate transducers and the 3582A, 
we measure the coherence function between the circuit 
and each transformer. Each measurement produces a 
value of 4-1 at the powerline frequency and several of its 
harmonics. The experiment is saying that each trans­
former is completely responsible for the interference! This 
anomaly is caused by the fact that every transformer is 
wired to the same power source, which is the primary 
source of the disturbance. 

The principle to remember is: if two or more sources 
are related to (caused by) a primary source, then the co­
herence function will not reveal the secondary causal 
relations we want to determine. 

This can be a difficult problem in some situations. It can 
somet imes be solved through the more complex tech­
niques of multiple coherences (Ref. 3). Of course, if we 
can arrange to turn on the sources one at a time, the solu­
tion is easy! 
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Summary of how the coherence function Is used 
In Section 1 we discussed two broad classes of meas­

urements in which the coherence function has an impor­
tant role: transfer function measurements and determin­
ing causality. The contribution of the coherence function 
to each of these may be summarized: 

a) Transfer functions. The basic technique used to 
improve the measurement accuracy is spectrum 

averaging. The coherence function is an indicator 
by which we can determine the number of aver­
aged spectra needed to achieve a desired accu­
racy. 

b) Causality. At every frequency being analyzed, the 
coherence function directly indicates causality. Its 
value is interpreted as the fraction of system out­
put power than can be attributed to the input. 

In this section, we outline suggested measurement pro­
cedures for the 3582A. Both transfer function and 
causality measurements are included. There are also 
tables to help you determine the statistical accuracy of 
your measurement. 

Transfer function measurements 
When noise or other signals unrelated to the input are 

present in the output, the 3582A Transfer Function rou­
tine can employ RMS averaging to improve the statistical 
accuracy. In this note, we use the "90% confidence limit" 
approach to quantify the accuracy. This means that there 
is a band of values (given in dB) around each measure­
ment of the transfer function amplitude. The true ampli­
tude will lie within the band in 9 out of 10 measurements 
on the average. For transfer function phase, the idea is 
the same, but the measurement band is given in degrees. 

The following procedure can be used to detect regions 
of noise contamination and to get acceptable statistical 
accuracy in measuring the transfer function. 

a) Set up the transfer function routine on the 3582A, 
using the built-in noise source or another drive sig­
nal which covers the frequency range of interest. 

b) Execute 16 or more RMS averages. 
c) Display amplitude and coherence (or phase and 

coherence). 

d) Use Table 1 to determine whether the measure­
ment is sufficiently accurate in regions where the 
coherence is low or where high accuracy is de­
sired. If not, more spectra can be averaged by 
pressing a higher-valued "number of averages" 
button. 

e) Repeat if necessary. 

Causality measurements 
For measuring causality the desired result is the value 

of the coherence function itself. If this is not + 1, then 
some averaging must be performed in order to get a sta­
tistically accurate measure of its true value (see Sec­
tion 2). 

This procedure should yield acceptable results: 
a) Set up the coherence measurement on the 

3582A, connecting the source being investigated 
to Channel A and the system output to Chan­
nel B. 

b) Execute 16 or more RMS averages. 
c) Display the coherence function. Using Table 2, 

determine whether the measurement is satisfac­
tory. If not, continue averaging by pressing a 
higher-valued "number of averages" button. 

d) Repeat as necessary. 
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90% confidence limits on the measurement of the amplitude | H | and phase 0 of transfer 
functions, as a function of the measured walue of coherence and the number of averages. 

Measured value ~T . r A 

Number of Averages 
of coherence function 

For each entry, the first two digits are the upper and lower bounds on |H| , In dB* 
Digits In parentheses are the bounds on </>9 In degrees* 
(Data compiled from formulas In Mel 3 , p. 202.) 

90% confidence limits on coherence function measurements. 
Entries in table are min, max limits. 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

16 

+ 5.2 
- 14.6 
(±54) 

+ 4.2 
- 8.4 
(±38) 

+ 3.5 
- 6.0 
(±30) 

+ 3.0 
- 4.5 
(±24) 

+ 2.5 
- 3.5 
(±19) 

+ 2.1 
- 2.7 
(±15) 

+ 1.6 
- 2.0 
(±12) 

+ 1.1 
- 1.3 
(± 8) 

32 

+ 3.8 
- 7.1 
(±34) 

+ 3.1 
- 4.8 
(±25) 

+ 2.6 
- 3.6 
(±20) 

+ 2.1 
- 2.8 
(±16) 

+ 1.8 
- 2.2 
(±13) 

+ 1.5 
- 1.7 
(±10) 

+ 1.1 
- 1.3 
(± 8) 

+ 0.8 
- 0.8 
(± 5) 

64 

+ 2.8 
- 4.2 
(±23) 

+ 2.2 
- 3.0 
(±17) 

+ 1.8 
- 2.3 
(±14) 

+ 1.5 
- 1.9 

(±11) 

+ 1.3 
- 1.5 
(± 9) 

+ 1.0 
- 1.2 
(± 7) 

+ 0.8 
- 0.9 
(± 6) 

+ 0.5 
- 0.6 
(± 4) 

128 

+ 2.1 
- 2.7 
(±16) 

+ 1.6 
- 2.0 
(±12) 

+ 1.3 
- 1.6 
(±10) 

+ 1.1 
- 1.3 
(± 8) 

+ 0.9 
- 1.0 
(± 6) 

+ 0.7 
- 0.8 
(± 5) 

+ 0.6 
- 0.6 
(± 4) 

+ 0.4 
- 0.4 
(± 3) 

256 

+ 1.5 
- 1.8 

(±11) 

+ 1.2 
- 1.4 
(± 8) 

+ 1.0 
- 1.1 
(± 7) 

+ 0.8 
- 0.9 
(± 5) 

+ 0.7 
- 0.7 
(± 4) 

+ 0.5 
- 0.6 
(± 4) 

+ 0.4 
-0.4 
(± 3) 

+ 0.3 
- 0.3 
(± 2) 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

16 

.15, .59 

.25, .67 

.36, .74 

.50, .81 

.65, .88 

.81, .94 

32 

.23, .54 

.33, .63 

.45, .71 

.57, .78 

.70, .86 

.85, .93 

64 

.28, .50 

.39, .59 

.50, .68 

.61, .76 

.74, .84 

.87, .92 

128 

.32, .47 

.42, .57 

.53, .66 

.64, .75 

.76, .83 

.88, .92 

256 

.34, .45 

.45, .55 

.55, .64 

.66, .73 

.77, .82 

.88, .91 

4 

Measured value mT r A 

V • £ Number of Averages 
of coherence function 



Example 1: Using the coherence function to 
monitor a transfer function experiment 

The purpose of the experiment indicated by Figure 3 is 
to demonstrate that transfer function measurements are 
susceptible to contamination by signals other than the in­
tended input, and to show how the coherence function 
reveals the existence of such signals. 

We measured the relative mechanical inertance of a 
small structure: a 5" by 7" by .062" printed circuit board. 
Inertance is acceleration/force, and this quantity was 
measured as a transfer function by connecting an ac-
celerometer output to Channel B and the pseudo-ran­
dom driving signal to Channel A. (A small shaker con­
verted the electrical driving signal to mechanical force.) 
Modal vibration resonances are clearly indicated in the 
inertance spectrum, which is displayed in Figure 3(a) 
along with the coherence function. Except for zero fre­
quency, where the accelerometer output is zero, the 
coherence function is unity nearly everywhere else, indi­
cating a good measurement environment (in the sense of 
signal/noise ratio). One exception occurs at the 100 Hz 
resonance. Here, the coherence function has decreased 
to about 0.83, indicating a signal/noise ratio of 
. 8 3 / 1 - .83, or about 7 dB (see appendix for using the co­
herence function to calculate a S/N ratio). This effect oc­

curred because, at this frequency, the accelerometer out­
put was low, approaching the noise level of the analyzer. 

Without changing anything else, we made a minor 
modification before running the experiment again. This 
was to drop a small screw into a hole in the test board. 
The mass of the screw only slightly lowered the resonant 
frequencies, but its looseness caused it to vibrate against 
the board as excitation was applied. Within the experi­
mental structure we thus created a non-linear element 
which converted (that is, smeared) some of the input 
energy to other frequencies. As Figure 3(b) shows, not a 
lot of energy was converted, since the coherence function 
is generally high. However, at just those places where we 
would expect signal/noise problems—where the re­
sponse signal is small—the effect of the smeared energy is 
apparent. An interesting exception is the strong 260 Hz 
resonance, which is only lightly affected; this means the 
energy generated by the vibrating screw is not uniformly 
distributed in frequency. 

The principal use of the coherence function in meas­
urements of this sort is to alert the person performing the 
measurement that there Is a signal/noise problem and to 
give him information about the frequencies and magni­
tudes of its occurrence. 

Vib ra t ion s p e c t r u m of 5W x 7W p r i n t ed c i rcu i t boa rd . 

a) Normal transfer function response b) Transfer function contaminated by wlbration 
from loose hardware on test specimen 



c )Tes t se tup. The "loose hardware," a 10-32 screw 
inserted through a hole in the test board, Is 
wisible in fight front corner of board. Dewlce on 
top of analyzer is power supply for 
accelerometer0 

Experiment 2: Dual-input system with 
random signals 

The main purpose of the experiment of Figure 4 is to 
show how the coherence function is used to separate the 
individual effects of input signals which are combined in a 
system to form a common output signal, and thus to re­
veal input-output causal relations. 

Sometimes simple spectrum analysis can be used to 
trace cause-effect relations. The output signal of a system 
and an input which is thought to be causally related to it 
may share common spectral components or lines; this 
usually means a causal relation unless another input also 
has the same components, which makes the situation a 
lot more complicated! However, when the spectra are 
continuous (without individual lines), as is the case with 
random signals, one cannot usually deduce causality by 
looking for common components. One purpose of this 
experiment is to illustrate that point. 

In the system shown in Figure 4, there are two identi­
cal noise sources, X and Y, connected to the inputs. In 

this case, "identical" means that the two power spectra 
are flat and have the same amplitude, so that they 
couldn't be distinguished with a spectrum analyzer. Inside 
the box representing the system, each signal is passed 
through a simple filter and then the two are combined 
linearly to form the output signal. The filters, low-pass 
and high-pass, are carefully matched in cutoff frequency 
and gain, with the result that the output signal Z also has 
a flat spectrum, even though it is the combination of two 
filtered inputs. Figure 4(a) shows the spectra of one of 
the inputs and the output, while Figure 4(b) shows the fil­
ter transfer functions, their -3 dB frequencies being 
equal. Assuming that we have access only to the termi­
nals Xi, Yi, and Z, and that we can't disconnect the 
sources, how do we determine the causal relation of each 
source to the output? In fact, how can we tell that this 
system is any different from one in which there is no fre­
quency dependence in the combining process? 

Dua l i n p u t s y s t e m wi th r a n d o m s igna l s 
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The measured coherence functions, shown in Fig­
ure 4(c), provide the answer to these questions. Remem­
bering from the discussion in Section 2 that the measured 
coherence function of a random process must be aver­
aged to improve the statistical accuracy (which is why the 
display is ragged; see Table 2), we can interpret the re­
sults as follows. First, the low-pass signal X is the domi­
nant output term at low frequencies, since the coherence 
function is nearly unity there. The same is true for signal 
Y at high frequencies. At any frequency, the two coher­
ence functions add to unity, confirming the statement in 
Section 2 that the coherence function represents the frac­
tion of output power attributable to the input in question. 
Note that both functions are equal to 0.5 at the common 
crossover frequency 1040 Hz (which is often called the 
half-power point). Finally, the answer to the second 
question is that the coherence functions for a system with 
no frequency dependence would be flat, at values which 
represent each input's contribution to the output power. 

b) Measured filter transfer functions. 

a) Noise spectra at one input (Xx) 
and output Z. The other input (Yx) has an 
identical spectrum* 

c) Coherence functions between 
each input and the outputs 
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Linear spectra and power spectra 
Figure 5 is the model of a linear, single-input system 

much like that of Figure 1 except the various signals and 
the transfer function are shown both as functions of fre­
quency and of time. Also, a single disturbing signal (or 
noise source) is shown adding to the total output signal 
Y. This represents the simplest form of the situation de­
scribed in Section 1, in which the output is contaminated 
with energy not directly related to the input. 

The time-function and frequency-function equivalent 
forms of a signal are related by the Fourier transform. For 
instance, 

X(f) = F[x(t)] = P x(t)e-'2"*dt 

The frequency function X(f) is called a linear spectral 
function, or linear spectrum because it corresponds to the 
first order time function x(t). There is another spectral 
function corresponding to the power function x2(t). (We 
assume, for convenience, that x(t) is a voltage across a 
1 ohm resistor.) This function is the "auto" power spec­
trum (that is, self-power) and it is defined as 

auto power spectrum = Gxx(() = X(f) • X*(f) 

That is, the linear spectrum X(f) multiplied by its complex 
conjugate. Notice that the power spectrum has no 
imaginary term; its phase is zero at all frequencies. 

There is another kind of power spectrum which re­
veals, in a sense, the relation between two signals, say 
X(f) and Y(f). This is called the cross-power spectrum, 
and it is defined similarly: 

cross-power spectrum = GYx = Y(f) • X*(f) 

In contrast to the auto power spectrum Gxx(i), the cross 
power spectrum is generally complex (phase =£ 0). 

The cross-power spectrum is central to both the coher­
ence function and the method used by the 3582A to cal­
culate transfer functions. 

S ing le Input , l inear s y s t e m wi th 
n o i s e a d d e d t o o u t p u t s igna l 

Defining the coherence function 
With the concept of a power spectrum in hand, the 

formal definition of the coherence function, applied to 
the situation of Figure 5 can be given: 

coherence function = y2 = ^ ™ '—TTT-
Gxx{\) • Cjyy(f) 

(From now on, we will drop the independent variable f 
from the expressions to keep them tidier, but it is as­
sumed.) 

The expression for y2, the coherence function, can be 
examined from at least two points of view which provide 
useful interpretation and insight. 

The coherence function as a power ratio 
Note that the output spectrum Y contains both input-

and noise-related components: Y = HX + N. The 
power spectrum, GYY, can be expressed using these com­
ponents: 

Gyy=: YY* = (HX + NMHX + N)* -
|H | 2 GJO: + GNN + HGXN + H*GATX 

We can also form an expression for the cross-power 
term: 

GYX = YX* = (HX + N)X* = HG** + G** 

Now, before using these expanded forms to construct an 
expression for the coherence function, we must reason as 
follows: since X and N are assumed to be independent, 
uncorrected signals, they do not have any common, 
synchronous components. Therefore, cross-power terms 
involving these signals (such as GNX) must be zero. Using 
this argument, the expanded expression for the coher­
ence function simplifies: 

2 __ (HGXJT) (HGXX) * _ [H|2Gxy 

Gxx (IH12GXX + GNN) | H12GXX + GNN 

In words, this interprets the coherence function as 

2 - °utPut power due to the input 
total output power 

That is, y2 equals the fraction of the output power at­
tributable to the input signal. (Any nonlinearity in the sys­
tem may convert some of the input signal to energy at 
other frequencies, but the coherence function treats this 
energy as noise.) It follows that y2GYy is the output 
power related to the input, and that (l-Y2)Gry is the 
noise component of the output power. Therefore, the 
system signal-to-noise ratio is 7VI -7 2 . Note that this is 
not the overall S/N ratio, but the S/N ratio at each fre­
quency, a very useful aid in interpreting measurement 
results. 
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The coherence function as a correlation coefficient 
Another useful interpretation of the coherence function 

is in terms of the statistical measure called the correlation 
coefficient. 

Let's assume we have N values of each of the complex, 
zero-mean variables X and Y. (In reality, this is the situa­
tion in the 3582A after making N two-channel trans­
forms; at one frequency, X, and Yt represent the linear 
spectral values of the ?th transform of the signals in chan­
nels A and B, respectively.) Estimates of two statistical 
quantities defined for such variables are 

1 N 
1) the variance: ax = ~ J] XX* 

N fsi 
1 N 

<* = TT E Y,Y; 

2) the covariance: Cy x= ™ ]£ Y,X; 
^ i=X 

Another quantity is the normalized correlation coefficient, 
defined in terms of (1) and (2) as 

3) the normalized correlation coefficient: 

QYX = 
Oy(Jx 

Now the 3582A makes these same calculations (1) and 
(2) in the course of determining the coherence function. 
That is, at any one of the 256 analysis frequencies, it cal­
culates 

1 N 

channel A auto spectrum = Gxx - *r £ X,X * = ax 

The first two references are clearly-written, illustrated 
technical articles dealing with several aspects (including 
coherence functions) of random-process measurement. 
The last is probably the standard text dealing with this 
subject matter. It is clear and well organized so that it may 
be used for reference as well as study. 

1) "Effective Measurements using Digital Signal 
Analysis," by Peter R. Roth, IEEE SPECTRUM, 
April, 1971 

And similarly, channel B auto spectrum = GYY = °Y and 
the cross-power spectrum = GYx = CYX. 

From these results and the previous definition of the 
coherence function, we see that y2 = Q^X. 

Thus, we can interpret the coherence function as the 
squared correlation coefficient of the two spectra X and Y 
a t each analysis frequency. 

The use of the cross-power spectrum to 
calculate transfer functions 

On page 2 the use of the cross-power spectrum as a 
means for calculating transfer functions was mentioned. 
The reason for this technique will now be outlined. 

Referring to Figure 1, it is customary to derive the 
transfer function H by calculating the output/input ratio 
Y/X. This is fine, since Y = HX, except for the situa­
tions where Y contains some noise or other contaminat­
ing signal. In this case (see Figure 5), the output/input 
ratio is (HX + N)/X, which is not equal to H, nor can 
any amount of signal averaging cause it to approach the 
true value of H. 

A remedy for this problem can be found as follows. 
Multiplying numerator and denominator by X*/X*, we 
have 

X, JL* = G?x. ^ H X X * + NX* = HGXY + GNX 

X X GXx XX GXx 

As before, we reason that the term G ^ is the cross-power 
between X and N, which are assumed to be uncorrelated. 
Averaging will thus produce an estimate of this term 
which tends to zero. Thus, the true value of H is recover­
able, even in the presence of system noise, through the 
use of the cross-power spectrum and the auto spectrum 
of the input. 

2) "How to Use the Spectrum and Coherence Func­
tion," by Peter R. Roth, SOUND AND VIBRA­
TION, January, 1971. 

3) "Random Data: Analysis and Measurement Proce­
dures," by Julius S. Bendat and Allan G. Piersol, 
Wiley-Interscience, 1971 
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